Mathex démonstration

$Pierre_M rgl$

February 2025

Démonstration de Pierre Mergoil Lemme 2 Maths Expertes.

L'objectif de cette démonstration est de démontrer le lemme suivant (nous traiterons uniquement du sens \Rightarrow):

Soient $p \in \mathbb{N}$ un nombre premier, $n \in \mathbb{N}^*$ et $(x_1, \dots, x_n) \in (\mathbb{Z}^*)^n$. $p \mid \prod_{i=1}^{n} x_i \Rightarrow \exists i \in [1; n] \text{ tel que } p \mid x_i$

Cela est équivalent à démontrer la contraposée de cette implication c'est à dire: $\forall i \in [\![1;n]\!], p \nmid x_i \implies p \nmid \prod_{i=1}^n x_i$

Or d'après le lemme 1: si p est premier alors $\forall a \in \mathbb{Z}, \operatorname{pgcd}(a, p) = 1$ ou $p \mid a$.

On a ainsi l'équivalence $p \nmid a \iff \operatorname{pgcd}(p,a) = 1$

Ainsi, pétant premier: $\forall i \in [\![1;n]\!], p \nmid x_i \iff \forall i \in [\![1;n]\!], \operatorname{pgcd}(p,x_i) =$ et $p \nmid \prod_{i=1}^{n} x_i \iff \operatorname{pgcd}\left(\prod_{i=1}^{n} x_i, p\right) = 1$ On veut donc prouver l'implication suivante pour tout entier n:

$$\forall i \in [1; n], \operatorname{pgcd}(x_i, p) = 1 \Rightarrow \operatorname{pgcd}\left(\prod_{i=1}^n x_i, p\right) = 1$$

Soit la propriété P_n : " $\forall i \in [1; n]$, $\operatorname{pgcd}(x_i, p) = 1 \Rightarrow \operatorname{pgcd}\left(\prod_{i=1}^n x_i, p\right) = 1$ 1"

Montrons par réccurence que P_n est vraie pour tout entier naturel n.

Initialisation:

Pour n = 1 la propriété est immédiate.

Hérédité:

Soit $k \in \mathbb{N}^*$ supposons que P_k est vraie, c'est à dire que: $\forall i \in [1; k], \operatorname{pgcd}(x_i, p) \Rightarrow$

$$\operatorname{pgcd}\left(\prod_{i=1}^{k} x_i, p\right) = 1.$$

Montrons qu'alors
$$\forall i \in [1; k+1], \operatorname{pgcd}(x_i, p) \Rightarrow \operatorname{pgcd}\left(\prod_{i=1}^{k+1} x_i, p\right) = 1.$$

D'après l'hypothèse de réccurence: pgcd
$$\left(\prod_{i=1}^k x_i, p\right) = 1$$

et $\operatorname{pgcd}(x_{k+1}, p) = 1$.

Donc d'après le théoreme de Bézout: $\exists (a;b;c;d) \in \mathbb{Z}^4$ tel que

$$a \prod_{i=1}^{k} x_i + bp = 1 \ (1)$$

et
$$cx_{k+1} + dp = 1$$
 (2).

Par produit membre à membre de 1 et 2:
$$\left(a\prod_{i=1}^k x_i + bp\right)(cx_{k+1} + dp) = 1$$

$$\iff ac \prod_{i=1}^{k+1} x_i + p(ad \prod_{i=1}^k x_i + bcx_{k+1} + bdp) = 1$$

De plus, par somme et produit d'entier: $\left(ad\prod_{i=1}^k x_i + bcx_{k+1} + bdp; ac\right) \in \mathbb{Z}^2$.

Ainsi
$$\exists (u; v) \in \mathbb{Z}^2$$
 tel que $up + v \prod_{i=1}^{k+1} x_i = 1$

Donc d'après le théoreme de Bézout: pgcd
$$\left(\prod_{i=1}^{k+1} x_i, p\right) = 1$$

Donc P_{k+1} est vraie.

Conclusion:

La propriété est initialisée pour n=1 et est héréditaire. Donc par le principe de réccurence $\forall n \in \mathbb{N}^*, \forall i \in [1; n], \operatorname{pgcd}(x_i, p) = 1 \Rightarrow \operatorname{pgcd}\left(\prod_{i=1}^n x_i, p\right) = 1$

CQFD.